Если вы уже пытались узнать что-то о нейронных сетях и глубоком обучении, то, скорее всего, столкнулись с изобилием ресурсов, от блогов до массовых открытых онлайн-курсов различного качества и даже книг. Ресурсы по нейронным сетям обычно делятся на две категории. Некоторые из них касаются в основном концептуальной и математической части и содержат как рисунки, которые, как правило, встречаются в объяснениях нейронных сетей, так и круги, соединенные линиями со стрелками на концах, а также подробные математические объяснения того, что происходит, чтобы вы могли «вникнуть в матчасть». На других ресурсах — много кода, запустив который вы видите, как снижается ошибка и «обучается» нейронная сеть.
Очевидно, что такие объяснения не дают понимания того, что на самом деле происходит: лежащих в основе математических принципов, отдельных компонентов нейронной сети, как они работают вместе и т.д. Для более точного понимания мы реализуем все эти концепции с нуля в Python и соединим их, создавая рабочие нейронные сети, которые вы можете обучать на своем компьютере дома. Несмотря на то что мы уделим немало времени деталям реализации, целью реализации этих моделей в Python будет укрепление и уточнение нашего понимания концепций.
В этой книге:
- Четкие схемы, помогающие разобраться в нейросетях, и примеры рабочего кода. - Методы реализации многослойных сетей с нуля на базе простой объектно-ориентированной структуры. - Примеры и доступные объяснения сверточных и рекуррентных нейронных сетей. - Реализация концепций нейросетей с помощью популярного фреймворка PyTorch.
Разместите ссылку на эту страницу в социальных сетях. Так о ней узнают тысячи человек:
Facebook
Twitter
Мой мир
Вконтакте
Одноклассники
Нашли ошибку? Сообщите администрации сайта: Выберите один из разделов меню и, если необходимо, напишите комментарий
За ложную информацию бан на месяц
Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:
Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
Описаны инструментальные средства для разработки приложений искусственного интеллекта. Даны основы языка программирования Python. Раскрыты основные понятия и определения искусственного интеллекта. Рассмотрены вопросы программной реализации элементов нейронной сети и построения многослойных нейронных сетей. Большое внимание уделено применению специа ...
Благодаря серии недавних достижений глубокое обучение значительно усилило всю область машинного обучения. В наше время даже программисты, почти ничего не знающие об этой технологии, могут использовать простые и эффективные инструменты для реализации программ, которые способны обучаться на основе данных. В настоящем практическом руководстве показано ...
В учебном пособии рассматриваются основы теории нейронных сетей и нейроконтроллеров, необходимые для понимания принципов нейросетевых технологий - мощного средства построения систем автоматизации, которое в последние годы активно используется в инженерной практике. Приводится описание основных структур нейронных сетей регуляторов, рассмотрены приме ...
В книге рассматриваются как классические, так и современные модели глубокого обучения. В первых двух главах основной упор сделан на понимании взаимосвязи традиционного машинного обучения и нейронных сетей. Главы 3 и 4 посвящены подробному обсуждению процессов тренировки и регуляризации нейронных сетей.
Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц. Если это не так - свяжитесь с администрацией сайта. Материал будет немедленно удален. Электронная версия этой публикации предоставляется только в ознакомительных целях. Для дальнейшего её использования Вам необходимо будет приобрести бумажный (электронный, аудио) вариант у правообладателей.